Ask Mr. Protocol

by MICHAEL O’BRIEN

“fdm 50?‘?‘)‘, ”&‘ﬁ'#‘dHOJI??%’S. ‘i{rﬂ?’a‘f

Afms%oyne/j 2] }mve m}tster}v at ane end’ of.

my cases, but to have it at both ends is
bou c‘wgﬁwﬁn{g. »

—A. Conan Doyle, The Adventure of the
Tllustrious Client

A .cmrs/;z;b cannot run without

rotacale.”
—Myr. luvak, evidently chief network

engineer of the U.S.5. Voyager

“She read a book and decided thar

the client and server weve the at!;n?r umy
around.”

=A rcal-world quote. Honest.

Mr. Protocol Serves a Distinguished Client

0 o qug}).‘r 7 fm:f’: b}'eatfaef -)'I'xf arr

. in here is the worst ['ve ever seen
except for the air outside, which is even
worse! What in the world is going on?

A w I'm afraid you're in the thick
=% = of it, if you'll pardon the
expression. Mr. Protocol is having one
of those weels, and we'll just have to
humeor him until the fit
passes. For now, wee in
London, on Baker Strect.
The year is 1891, and the
air outside is in the grip of
one of the infamous
London “yellow fogs.” It’s
a sulfurous, industrial
brew. Il kill hundreds,
and Mr. Protocol is at-
tempting to dispel it by
repelling it with Turkish
tobacco.

What really has me
l'eild.}r o l‘esigl'l as amanu-
ensis is that he’s got me
tottering around with a
distinct limp, carrying a
medical bag and murter-
ing something about a
“Jezail bullet.” And to top
it all off, he’s going on and
on about a clienr so dis-
tinguished that he can’t be
named. On the other
hand, I've got a deal on
Victorian wool trousers that’ll last me
until the 1990s the long way, so I sup-
pose I shouldnt complain.

Really, [wish the computer press
would just shut up about all this
client/server stuff, If it weren't for that,

a1

we wouldn’t be having these problems.
I'm sure that’s what's set him off.

As usual, Mr. Protocol’s fit has its
basis in the distant past of the
Ingernet. In fact i goes back o the
very beginnings of the ARPANET,
when the “client/server model” was
chosen as the basis for just about all
network interaction. It’s such a funda-

mental concept that Mr. Protocol is
even less than usually rational in its

vicinity, and even experienced pro-
grammers can be led astray by follow-
ing it too slavishly.

The basic idea is simple. I'll refrain

SUNExPeRT Magazine December 1995

from saying “too simple” in Mr. P’s
hearing range, since he can make any-
thing seem far from simple (I don't let
him balance the checkbook since the
kitchen table disappeared in what has
to have been a dimensional warp). But
it’s not very hard. You're using a com-
Plltfr bCCaLlSC y'OU. wanrt it o dO s0ome-
thing for you. On the way to the big
thing, you want a bunch
of smaller things, like
windows, files, a connec-
tion to another net
machine and so forth.
The network delivers
these “resources” (a fine
word, thart) to you via
“servers.” You accept
these resources through
the use of “client” pro-
grams. When you run
Mosaic, Netscape, telnet,
Ftp, tf or whatever, you
are running one half of
the resource delivery
mechanism: the client.
The server isn't (usually)
run by a person. I, or
some avatar of it, runs in
the background all the
time on the rarget system.
You ask the client pro-
gram](Or thC resource YCILI
want, and the server
sends it down to you.
‘T'he details of this depend on the
nature of the thing you're trying to
get, or gec done. File transfer happens
in one big chunk. In ftp, the resources
are files: Ask for file, get file. Telner is

more interactive, and it’s harder to

TOM BARRETT

define exactly whart the resources are.
Thars why telnet has such a funny
narme, Wh:lt itJS Scwing]..S ACCEEs [0
another machine. The inreraction is
continuous, though. You shovel input
into the client, and the server shovels
output back at you, in a (sccmingly)
endless stream. Netscape is more
interactive than fip, but less so than
telner—it supports one or a few trans-
actions per mouse click in the client.
irc is a client program that uses a
special-purpose IRC server to
exchange blither with other clients, on
a line-ar-a-time basis.

The pmb]em, as Mr. Protocol sees
1t, is that as systems become more
complex, and the client/server model
undérgoes inevitable elaboration,
some people expend too much energy
trying to shoehorn all possible archi-
tectures into the simple one-client,
one-server, one-transaction model
with which the ARPANET began.

Consider, for example, good old
NES. This is definitely a client/server
relationship, but it has become
skewed. No special client program is
needed. Any program that tries to
access an entity in the file system that
turns out to be on an NFS-mounted
file system is suddenly put in the posi-
tion of being an NFS client. And
while an NES server can seem to be
runnirlg many instances of nfsd, in
fact many transactions take place
mostly in the kernel of the server, for
the sake of efficiency. So here we have
a client program that isn’t a client pro-
gram, making requests that don’
malke 1t as far as the server. Yet the
interaction is still obviously a clear-cut
client/server model. It just has an
identity crisis.

The client/server model hag served
well over the years, buc it does require
one peculiarity. An ordinary program
(where “ordinary” is defined as “the
kind you used to write in your begin-
ning programming class™) has a linear
flow of control. Most FORTRAN
programs are still wricten this way.
Re&ld the input ﬁle, do the magic,
write the output file, exit. Client/sery-
<r [_"if(_'igl'é'l’.l.‘[ls IIHVC Loy }.')C W'I';LlCI'I Jl'll q
different way, though. They're imple-
mented as loops. Mr. Protocol threat-
ens to strangle me if I call them

26

“infinite loops” since they do have
definite terminations, but only under
outside influence (i.e., the user com-
mands them to exirt).

The loop structure for a program is
familiar to anyone who has written an

editor, or other interactive code, espe-
cially for a windowing system. Clicne
programs look very much like this.
The}’ reQ.d Commandﬂ Frﬂn'l r]‘lﬁ 18ET,
and based on these commands, send
traffic to the server. In the case of ftp
these are file transfer commands; in

Remote procedure
call code involves so
much standardized
boilerplate that it is
almost never written

directly these days.

the casc of telnet, these are lines of
text, or single characters. In the case
of Mosaic or Netscape, mouse clicks
by the user translate into requests to
the Web server on the other end of
the Net connection to send pictures,
more text, a new page or whatever.

Server programs are written in the
same way, bur they operate in a dif-
ferent environment since they are not
under the control of a local user.
'111‘1&’}' are spawned Wllen a C}.ieﬂt
OPCHS a 11th0rl<: COnneCt}.On Q.nd
requests a service, and their command
1ODP il'lVOlVES l'e’fldi ng I'Equests Fl'()m
the Ner and re.epnnding_

More complicated interactions are
possible. Mr. Protocol, for several
years, never seemed to write a pro-
gram that did not involve the use of
remote procedure calls, about which
he has written before. A remote pro-
cedure call wanslates something that
lDDkS llke a ﬁlllctif_)n Cﬂll into a
request over a network, A “return”
ﬁ.‘OIIl {,h.e FI.!I]CE}OI] acfu'd”.}’ fCPrCSCIl[S
the receipt of a response from a net-
work server.

C}.iell[E].Ild SEIVEr prog[a_ms are gcl’l-

SUNEXPERT Magazine December 1995

erally written ar the same time, since
they amount to the implementarion of
a special-purpose protocol, which is
probably why Mr. Protocol has such a
major reaction whenever the subject
comes up. In parcicular, writing code
thar uses remote procedure calls
almost always involves writing che
server and the client programs at the
same time, since they share much of
the same code.

Remote procedure call code
involves so much standardized boiler-
plate that ic is almost never written
directly these days. Instead, a sort of
ad hoc language is used that specifies
the name and type of the called func-
tion, the name and type of the argu-
mMents G.l'ld l'hc name .].rld tYPe Ofan_y
returned values. This is translated by a
program (Sun’s version is called
rpegen) into a mass of C code that
performs the scur work of locaring the
server on the network, opening a con-
nection to it, marshaling the argu-
ments (a fancy term for “converting
the arguments into a form suirable for
squirting over the Net”), shipping the
request off and waiting for the
response. The response must in turn
be converted from nerwork format o
local machine formar.

Obviously this takes considerable
\\«"Ofk, 50 remote Prﬂcedure CE.HS are
nowhere near as fast as local funcrion
calls, unless you are using something
like a Myrinet plus special software to
ensure that roughly the same number
of machine instructions are executed
in each case. If you are running such
S[’c{:ia} }Iard\'\!ar{; and SU{-—twarC, YOU. arc
almost certainly aware of it already,
SirlCC YOou arc now maore dﬁaf th&n
Quasimodo from all the people telling
you how special your system is.

Absent such special stuff, remote
procedure calls trade speed for flex-
ibility and distriburion. They are
ideal, for instance, for writing soft-
ware that pretends that a distributed
darabase is local to the client program.
This is how NFS works. System calls
such as open, read, write, Ctc. arc
translated into remote procedure calls
to the NES fle server where, as we
have said, most of the casy stuff is
handled directly by the kernel.

Obviously this is a case where

rpcgen was not used to implement
the protocol.

Mr. Protocol has found, over the
years, that it is often the case that
rpegen alone is not enough to do the
job, even in cases that are obvious
candidares for the remote procedure
call type of server/client interaction,
This is because if it were that easy,
someone would have done it already.
It is usually necessary, Mr. P. sadly

ASK MR. PROTOCOL

admits, to dink with, diddle and gen-
erally mess with the output of rpegen
in order ro accomplish whatever pecu-
liar and extraordinary network inter-
action is required. This is perfectly
OK. rpcgen is a tool, not Holy Whit,
One look at the code it generates and
you will see that the ante-cedents of
rpegen have very litde to do with
anything holy.

The only messy thing abour this

CA[[

MlNlcdmpuren EXCI-IANQE

for

REfURblshEd SUN & SGI Compum!s
Sell © Buy ® Rent ® Repair
120 Day WARRANT)/_ON all eouipment

Technical help Hor-Line © Internarional shipme'i

THIS MONTH’S SPECIALS!

IPX 4/50FGX-32-P43, 32MB, 16" COLOR, 424MB DISK, FLOPPY
CLASSIC 4115FX-32-P44, 32MB, 535MB HDD, 168" COLOR .

16MB SIMM FOR IPX, CLASSIC, LX.

8MB AND 4MB VRAM FOR SPARC20SX AND SPARC108X U

17" COLOR MONITOR, 365-1316 .
19° GREYSCALE MONITOR, 365- 1099

1-408¢733+4400
N FAX 1-408+733.8009

Info@mece.com

610 N. Pastoria Avenue
Sunnyvale, California 94086, USA

Circle No. 29 on Inquiry Card

28

SUNEXxPerT Magazine December 1995

system is that it makes automatic
maintenance and generation of code
difficult. The source to your program is
no longer contained in the (relatively)
tny file of RPC specifications. Instead,
you must provide for some automatic
script in perl, sed, awk or something
similar to perform the dinking and the
messing with. This is just another
cxample of the fact thart the easier a
programruing tool is to use, the more
it limits your choices. Alas.

One other common occurrence in
Mr. Protocol’s experience is the com-
plete blurring of the distinction
between a client and a server. People
initially find the X Window System
confusing because the notion of hav-
ing a server do the drawing on the
screen seems foreign. It would seem
that the thing we see and talk to
would have to be a client. However, it
is a server, because the resource it is
managing is your screen real estate, as
well as your input devices. Paradox-
ically, you have to use the server to see
your clients, such as xterm. Mind
you, people still find the X Window
System confusing even after a number
of years’ experience, bur this is a dif-
ferent and more tragic matter.

Mr. Protocol has taken a flier ar
writing graphics programs in the past
as well, and in one such case, the dis-
tinction was blurred even further.
One program was responsible for dis-
play, the other for accessing the data-
base, and these programs exhibited
the sort of back-and-forth interaction
generally found only in coroutines.
Each program, it seemed, needed data
from the other to accomplish its task.
The result was a straightforward
blend. Each program became simulta-
neously a client and a server. Each
was a server in its domain of exper-
tise. Each was a client of the other as
required. The only danger in this
approach is that of any recursive
structure involving two entities: dead-
lock, where each half requires some-
thing from the other beforc it can act.
In this particular case, the recursion
was bounded and no deadlock was
possible. It pays to draw pictures
when you try something like this,
though, If your pictures are pretty
enough you can dump the program,

publish a book on how to draw the
pictures, and get rich as a pundit on
correct software design. If you come
across well teaching seminars, your
career is assured. Mr. Protocol even
gives you a free name for it: Struc-
rured Object-Oriented Recursive
Client/Server Programming,

What's Mr. Protocol’s point in all
this? He's glad you asked, and yes he
has one.

The poinc is thar it is a mistake to
become too hung up on the question
of which is the client and which the
server. Consider one of today’s typical-
ly monstrous applications: a system
with a graphical user interface de-
signed, for instance, to push files over
a network to a variety of destinations.
Let’s add some glamour and say that
we have everything in this stewpot:
satellite data streams, uplink facilites,
ATM switches, serial buffers, routers,
crypto boxes and all sorts of people in
uniform running around alternately
panicked and trying to be helpful.
The files are pushed up to the satellite

ASK MR. PROTOCOL

from the uplink facility and are
sprayed down to various sites around
the world. (Any resemblance between
this and an actual interservice joint
exercise is purely coincidental. Far be

The point is that
it is a mistake to
become too hung up
on the question of
which is the client and

which is the server.

it from Mr. Protocol to ever work on
anything practical, though calling
such a system as this practical is an
obvious stretch.)

Now, consider that we have several

independent pieces of software work-
ing here. One is the GUIL, which takes
commands from the user, and another
is the network module, which takes a
file and pushes it out the uplink, after
first converting it to some typically
wacko packer format, probably made
up on the spot. These two programs
must communicate: the GUI must tell
the file module whar files to push, and
the file module must inform the GUI
when a file transfer has been complet-
ed, or has at least had its component
bits sprayed into outer space.

If these two program pieces are
going to rendezvous on, say a UNIX-
domain socket, which is one of those
little wonders that looks like a file but
is really a socket, then which one is
gc}lrlg TO act nkc 4 Server a.l'ld create
the socker, and which one is going to
be the client and connect to it? The
file module looks a bit like a server,
after all: Tt takes requests to push files,
and then pushes the files. But on the
other hand, it’s started by the GUI,

and ir’s usually more convenient in

“nfel.

Run

A
N
W
.E:
sy
Ca

Now is the time to consider migrating your SPARC®-hased
Solaris™ solution to the powerful Intel™ x86 platform. The x86 platform
provides unmarched value for Solaris users. Both rthe 90MHz and
100MHz Pentium™ workstations deliver the performance of RISC
waorkstations costing thousands of dollars more. Solaris 2.4 for %86

Els Compurers makes running Solaris
for x86 a breeze. EIS is chartered ro provide
turnkey %86 solutions for Solaris. In addition
o our line of Solaris-certified desktop
Yy % machines, FIS resells laptops and servers
f ‘ from brand-name manufacturers, configured
specifically o run Solaris. All sysrems come

The Tntel Inside fopo i &

The SPARC 1

inside) now

coneains all the same fearures found it its SPARC cousin, and provides
superior performance to users running popular Windows applications
under WABL As an added bonus, workstations built on the Intel
placform can run other well-known operaring systems and applications
in a dual-boot mode.

~ makes it easy.

preconfigured, with the O installed. KIS also
installs a wide range of unbundled software
from SunSoft™ and third-parey suppliers.

Call us now and discover the ease of
use, high performance and low cost that
makes Solaris for x86 and EIS Computers a
winning combination.

EIS Computers, Inc.
800-351-4608
info@eis.com

hitp:/fwww. eis.com

FEE tervel tratedemari

" 7 icragypstenns, e
1995 Emerald Ll Systerms,

righis reserved.

Circle No. 17 on Inquiry Card

SUNEXPERT Magazine December 1995 29

cases like that to have it turn around
and connect to the “master” program
right away, thereby indicating that its
begun execution and is ready to go.
The correct answer is: whatever
works. There is no right or wrong way.

things are hard enough to get working
without adding needless complication
to the design in a misguided attempt
to conform to a model. Models exist to
help us think about problems, not to
force us to smash the solution until it

The server turns around and jams exe-
cutable Java code down the throat of
the client and tells it to do all the work.
Sort of sounds like the new model of
the federal government, doesn’t ie? Your
Web client program becomes all-

fits the model.
For a final example, consider the

In most situations the file module is
indeed a server. Requiring it to be the

singing, all-dancing and suddenly the
work is being accomplished on your

one to receive the connection from the local workstation instead of on the

new programming language, Java.

GUI, however, makes program syn- Now;, this one’s a pip. You use a client machine where the server lives. People

chronization more difficult. These program to connect to a Web server. are routing this as the greatest thing
S since the invention of the transistor.

Certainly, Java will allow Web
clients to do things they couldn’ do

before, if only because they can now

Lose your mouse amd
increase your productivity.
Fr{.m-? WM Street to Stlicon

hundreds of free mice that came with their workstations
MOUSE-TRAK™ trackballs. The reason: prod

The correct

answer is: whatever
your top competitors have replaced .
works. There is no

right or wrong way.

Relishility: MOUSE-TRAK's rugged -
construction results in mzch higher

Productivity: Laboratory testing
has shown that only 4 hours of do things that were not preprogram-
reliability than mice or consumer med. It’s a fascinating new develop-
trackballs. MOUSE-TRAK doesn’t

take traders out of play or make

continuous mouse usage can result in

ment, but it does further blur the lines

as much as 60% loss of hand

berween client and server.
Mr. Protocol doesn’t think this
should bother you much, however, By

strength. A trader, engineer; or data

entry user in that condition is simply ~ support people pull their hair out!

not going to be as productive in the 7 Fax, or email today to the time you get a look at whart the

new Java browsers can do. you'll be

too busy surﬁng the Web to be both-

ered by definitions. =

second half of the

asin the first. ey or receive more

signs of information about MOUSE-TRAK

iguie when using a

Mike O’Brien has been noodling
around the UNIX world for far too
long a time. He knows he started out
with UNIX Research Version 5 (not

System V, he hastens to point out),

1-800-533-4822

MOUSE- moustrak.com

but forgets the year. He thinks it was
around 1975 or so.

He founded and ran the first nation-
wide UNIX Users Group Software
Distribution Center. He worked at
Rand during the glory days of the Rand
editor and the MH mail system, helped
build CSNET (first at Rand and later at
BBN Labs Inc.) and now works ar an
acrospace research corporation.

Mr. Protocol refuses to divulge his

qua[iﬁcations and may, in fact, have
none whatsoever. His email address is
anp@cpg . com.

Circle No. 25 on Inquiry Card
32 SUNEXPERT Magazine December 1995

